A Communication Complexity Proof that Symmetric Functions have Logarithmic Depth

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unbounded-Error Communication Complexity of Symmetric Functions

The sign-rank of a real matrix M is the least rank of a matrix R in which every entry has the same sign as the corresponding entry of M.We determine the sign-rank of every matrix of the form M = [ D(|x ∧ y|) ]x,y, where D : {0, 1, . . . , n} → {−1,+1} is given and x and y range over {0, 1}n . Specifically, we prove that the sign-rank of M equals 22̃(k), where k is the number of times D changes s...

متن کامل

Propositional Proof Complexity: A Depth Oral Survey

Propositional proof complexity is the study of the lengths of propositional proofs in various different proof systems and is ultimately aimed at settling the open problem of whether the complexity classes NP and coNP are equal. Although the history of logic and proofs dates back to antiquity, the formal study of proof complexity is relatively new. Tseitin published the first major proof complex...

متن کامل

The Unbounded-Error Communication Complexity of symmetric XOR functions

Settling a conjecture of Shi and Zhang [ZS09], we determine the unbounded-error communication complexity of the symmetric XOR functions up to a poly-logarithmic factor. Our proof is by a simple reduction to an earlier result of Sherstov.

متن کامل

One-Way Communication Complexity of Symmetric Boolean Functions

We study deterministic one-way communication complexity of functions with Hankel communication matrices. Some structural properties of such matrices are established and applied to the one-way two-party communication complexity of symmetric Boolean functions. It is shown that the number of required communication bits does not depend on the communication direction, provided that neither direction...

متن کامل

Depth-Bounded Communication Complexity for Distributed Computation

"!# $% !# &' )( * +& , -.-/ &0 21 , 3& , -3! 4) '5 ) 6 78 9 ;:< 3 ;:<,=! *> & 4)4) . % !? @$ @ ' A& , -.! B @1 , ? @4<&', -.!#, ' > 0C DE* F, ! -. G0 2 , H, 7 I; &' )( J K ,L-. 1 -. G + @-3, > 3, M MN, $%-3 2 , O 95 &B*? +78 9 ;:< O * % + 6: , !? @$ 0C P @$% Q *? 2 R * ,@ , A, MS& , -.-/ &0 2 , 3 ! * * , 4 T7# F&0 @! $% T ,U$% 'V? &' * J % -W!# $%MN, $%-A @ & C 6 !? @$ & 4X @$ Y:< K:E 4 4 MZ,>&...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BRICS Report Series

سال: 1996

ISSN: 1601-5355,0909-0878

DOI: 10.7146/brics.v3i1.19502